TEE-821 Advanced Thermal Energy Storage Systems Credit Hours: 03

Objectives

1. The objectives of this Advanced Thermal Energy Storage Systems course are:

- a. To understand the fundamentals for the sensible and especially latent heat thermal energy systems
- b. To analyses the governing physical principles with some simplified mathematical models
- c. To discuss the main components of such systems, in detail
- d. To develop new thermal energy storage (TES) systems
- e. To apply TES into thermal system
- f. To enable students to identify the optimal solutions to any thermal energy storage application, whether in the electrical, heat or transport sector.

Outcomes

- 2. By the end of this course students will be able to:
 - a. Recall the basic theory behind energy storage systems
 - b. Identify and explain the working principles of commercially-available thermal energy storage systems
 - c. Identify and explain the relative costs and sustainability of each technology
 - d. Evaluate the advantages and disadvantages of different thermal energy storage systems applied in a practical situation and compare the engineering problems in the real world
 - e. Describe sensible heat storage systems used for diurnal and interseasonal thermal energy storage
 - f. Evaluate the potential of phase change materials and chemical reaction systems for thermal energy storage
 - g. Compare the practicality of energy storage systems given the available resources within the local context
 - h. Evaluate the potential of energy storage in the local context from given case studies
 - f. Contents with suggested contact hours

No.	Topics	Book	Contact

	Hours
a. Introduction to Energy Storage Systems	4
 Fundamental Properties and Quantities 	
General Aspects of Thermodynamics and Heat	
Transfer	
Energy Demand	
Energy Storage	
Energy Storage Methods	
Comparison of ES Technologies	
b. Thermal Energy Storage and Environmental Impact	5
Energy and the Environment	
Major Environmental Problems	
 Environmental Impact and TES Systems and 	
Applications	
Potential Solutions to Environmental Problems	
Sustainable Development	
Illustrative Examples and Case Studies	
c. Thermal Energy Storage (TES) Methods	6
Thermal Energy	
Thermal Energy Storage	
Solar Energy and TES	
TES Methods	
Sensible TES	
Latent TES	
Cold Thermal Energy Storage (CTES)	
Seasonal TES	
d. Thermal Energy Storage and Energy Savings	6
TES and Energy Savings	
 Additional Energy Savings Considerations for TES 	
 Energy Conservation with TES: Planning and 	
Implementation	

•	Some Limitations on Increased Efficiency		
•	Energy Savings for Cold TES		
e. Ener	gy and Exergy Analyses of Thermal Energy Storage		10
Syst			
•	Theory: Energy and Exergy Analyses		
•	Thermodynamic Considerations in TES Evaluation		
•	Exergy Evaluation of a Closed TES System		
•	Exergy Evaluation of an Open TES System		
•	Exergy Analysis of Thermally Stratified Storages		
•	Energy and Exergy Analyses of Cold TES Systems		
•	Exergy Analysis of Solar Ponds		
f. Ther	mal Energy Storage Case Studies and Applications		14
•	Ice CTES Case Studies		
•	Ice-Slurry CTES Case Studies		
•	Chilled Water CTES Case Studies		
•	PCM-Based CTES Case Studies		
•	PCM-Based Latent TES for Heating Case Studies		
•	Sensible TES Case Studies		
•	TES Systems for Heating and Cooling in Residential		
	Buildings		
•	TES Systems using Waste Heat from Textile, Cement		
	and Steel Casting Industry		
•	TES Systems for Concentrating Solar Power (CSP)		
	Technology		
	Total		45
g.	Details of lab work, workshops practice (if applicable).	I	

g. Details of lab work, workshops practice (if applicable).No lab is required.

Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Remarks
No.			
1.	Thermal Energy Storage;	İbrahim Dincer	Text Book
	Systems and Applications,	Marc A. Rosen	
	Second Edition, John		
	Wiley & Sons, New York,		
	2011		
2.	Sustainable Thermal	Lucas B. Hyman	Reference Book
	Storage Systems:		
	Planning, Design, and		
	Operations, McGraw-Hill,		
	2011		
3.	Thermal Energy Storage	F.W. Schmidt and A.J.	Reference Book
	and Regeneration,	Willmott	
	McGraw Hill, 1981		
4.	Thermal Energy Storage	Haline Ö. Paksoy	Reference Book
	for Sustainable Energy		
	Consumption;		
	Fundamentals, Case		
	Studies & Design,		
	Springer, 2007		

- h. Details of online resources
 - (1) http://www.engineeringtoolbox.com/sensible-heat-storage-

d_1217.html

- i. Recommended journals
 - (1) Renewable and Sustainable Energy Reviews
 - (2) Applied Thermal Engineering
 - (3) Renewable Energy
 - (4) Solar Energy